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Kriging Direct and Indirect Estimates of
Sulfate Deposition: A Comparison
Gregory A. Reams, Manuela  M.P. HUSO,
Richard J. Vong, and Joseph M. McCollum

Abstract

Due to logistical and cost constraints, acidic deposition is rarely measured
at forest research or sampling locations. A crucial first step to assessing
the effects of acid rain on forests is an accurate estimate of acidic
deposition at forest sample sites. We examine two methods (direct and
indirect) for estimating sulfate deposition at atmospherically unmonitored
forest sites. The direct method only uses directly measured deposition
data, while the indirect method additionally incorporates precipitation
measurements from a spatially denser network of monitoring sites. Sulfate
deposition values were estimated by point kriging using both the direct and
indirect methods. By using the supplemental data from the precipitation
monitoring network, estimates of sulfate deposition improved substantially,
particularly at sites that are relatively isolated to the acid deposition
monitoring network. Cross-validation procedures indicate that by using
the indirect method, a reduction of approximately 20 to 25 percent in the
predicted error sum of squares occurred.

Keywords: Acid deposition, geostatistics, interpolation, monitoring,
variograms.

Introduction

In many studies that involve sampling within a given area,
sample independence fundamental to much of classic
statistical analysis cannot be assumed because the observed
variables are spatially correlated. Regionalized variable
theory and geostatistical analysis (Matheron 1971) provide a
way to use spatial correlation to derive unbiased estimates
of the observed variable at unmeasured points. The
techniques involved have been applied in a wide range of
disciplines, from toxic waste management to population
biology, and the unifying theme was spatially correlated
variables.

Acidic deposition is rarely measured at forest research or
sample locations because monitoring remote forest sites is
difficult, time-consuming, and expensive. These logistical
problems push the costs over budgets. An accurate estimate
of acidic deposition at these sites is critical to assessing the
effects of acid rain on forests. In this paper, we examine
two methods (direct and indirect) for estimating sulfate
deposition and develop contour maps of sulfate deposition
for Pennsylvania. These estimates can then be used to
estimate sulfate deposition at unmonitored forest research
sites within the State.

The two methods presented are not the only procedures
capable of producing valid deposition estimates. For
example, cokriging could be used. Cokriging is most useful
when a highly correlated covariable is sampled intensely.
However, available software is limited and cokriging is
poorly understood by potential users because the statistical
notation is complex (Stein and Corsten  1991). We present
the indirect method as an alternative to cokriging. The
indirect method can be implemented using the univariate
kriging procedures more readily understood by potential
users, and user-friendly software for implementing
univariate kriging is available from numerous sources.

Estimation Procedures

Geostatistical analysis involves two basic steps:
(1) modeling the degree of similarity among measured
points as a function of their separating distance, and
(2) interpolating values among measured points using
the knowledge of their spatial correlation in the estimation
procedure. The degree of similarity between points is
evaluated by using the semi-variance statistic, y(h), which
is defined as half the expected squared difference between
values a given distance, h, apart:

1y(h) = -E[z(xJ - Z(Xi + h)]2
2

= &-@YJ [Z(Xi)  - Z(Xi + m* )
(1)

I

where

z(xJ = measured sample value at point xi (xi can be
multidimensional),
zG + h) = sample value at a point a distance of h from xi,
and
NF) = total number of pairs of points within an interval h of
each other.

The plot of y(h) against h is the semi-variogram, and a
model of the semi-variance is fit to this set of points.
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Figure l-Theoretical semi-variogram defined as a linear model,
illustrating (a) the range, (c,,) the nugget variance, and (c,) the sill. The
sill c,=c,+c,  c is the slope term of the linear model.

A theoretical semi-variogram (fig. 1) has three parameters,
the nugget (I+,), sill (c,), and range (a). In most cases, y(h)
increases with increasing h up to some maximum; this
maximum is approximately the variance of the variable of
interest. The distance at which the semi-variance levels off
is the range (a), the separation distance at which sample
values appear to be spatially uncorrelated. Although y(0) =
0 by definition, some finite positive value occurs for y(h),
as h approaches 0. This value is the nugget or intercept (c,,)
and embraces the variance that occurs at distances smaller
than the sampling intervals. The height above the nugget at
which the semi-variance is considered constant is the sill
(c,).

Several variogram models, such as the spherical, Gaussian,
and exponential, guarantee a positive definite covariance
matrix for any set of lags (Joumel and Huijbregts 1978).
We selected a spherical model based on its previous success
in fitting variogram models to deposition data (Haas 1990).
This model was used for all semi-variograms in this
analysis:

y(h) = co + c$($ - +($3] ,O<h<a
2a (2)

y(h) = co + ~1 ,h>a .

Modeling the semi-variogram is a critical step towards
interpolation by kriging-an algorithm for determining the
weights to be assigned to each point in the interpolation
procedure. If variable Z has been measured at locations x,,
x2 ,..., x,, resulting in a set of sample values z(x,),  2(x*)  ,...,
z(x,,),  the estimate of the value of Z at some unmeasured
point x0, is a linear combination or weighted average of all
the observed variables:

2(x0) = h&J + A&*) +. . . + A&,) , (3)

where

Ai = coefficients or weights associated with each of the
observed values.

In kriging, the weights (A,) are chosen so the estimator is
unbiased and the error associated with the estimate is less
than that of any other linear sum (i.e., minimum variance).
An unbiased estimate !?(xJ must equal E[z(xdJ,  therefore,
the weights Ai must sum to 1. The variance is minimized
subject to this constraint (i.e., C3L, = 1) by using a
Lagrangian multiplier u. A solution is found when

The allocation of the weights among points is determined by
the semi-variogram model. Higher weights are assigned to
samples closer to the point interpolated. Kriging is a
minimum variance, unbiased estimator, and an exact
interpolator because if the point being estimated has been
sampled, the weight (3c i) for all other points will be set to
zero and the kriging algorithm will return the sample value.

In determining which semi-variogram model to use, two
factors must be remembered: (1) lag distances h must
provide a sufficient number of points to produce reliable
estimates of y(h), particularly at small lags (in small data
sets this requirement often forces the use of fairly large lag
intervals); and (2) because only the few nearest points are
generally used for kriging estimates, the semi-variogram
needs to be accurate only at the shortest lag distances, and
the fit of the model at distances greater than half the
maximum separation of points in the data set is usually
inconsequential (Burgess and Webster 1980).

Direct and Indirect Methods of Deposition Estimation

The obvious and most common method of estimating acid
deposition values at unmonitored sites involves
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Figure 2-Sample locations of the pollutant monitoring network (24 sites)
and the precipitation monitoring network of the National Weather Service
(54 locations).

interpolating values between existing deposition monitoring
sites. This direct method only uses directly measured
deposition data. Several different methods for calculating
the weights have been developed including inverse squared
distance weighted averaging, Thiessen polygons, least
squares polynomials, optimal interpolation, multiquadratic
interpolation, and various forms of kriging (Vong and others
1989). Using specific criteria, Tabios and Salas  (1985)
compared these and other methods and found that kriging
and optimal interpolation were better than other techniques,
but no technique was uniformly the best.

One of the major constraints to kriging (and many
interpolation techniques) is the paucity of acid deposition
data in any given area. This scarcity of data makes it
difficult to adequately determine which model describes the
spatial variability in the data, and subsequently, to
accurately estimate deposition at unmonitored sites.
Developing a means of estimating deposition that would
also use precipitation measurements would be advantageous
for two reasons. First, these measurements are more easily
obtained than deposition measurements. Second, the
sampling network for precipitation measurements is much
denser than that for deposition measurements. First
proposed by Granat ( 1988) and discussed by Vong and
others (1989), the indirect method uses both measurements.
This method is based on the observation that the acid
concentration field over a region tends to be much smoother

(less variable) than the precipitation field, and that
concentration and precipitation are apparently not correlated
(Granat 1988). Because deposition is calculated as the
product of volume weighted mean concentration (VWMC)
of an ion and precipitation, the variability in deposition
values over a region should be closely associated with
precipitation. The indirect approach, then, is to estimate
concentration at sites where only precipitation has been
measured, then calculate deposition as the product of the
estimated VWMC and the known precipitation. The
resulting data set represents a denser sample, facilitating the
use of interpolation techniques such as kriging. In this
paper we estimate deposition values at 24 National Acid
Deposition Program (NADP)  monitoring sites in and around
Pennsylvania using both methods and compare the results.

Methods

Volume weighted mean concentration of sulfate and mean
annual precipitation values averaged over 3 years (1985-87)
for 24 sites in and around Pennsylvania were obtained from
the NADP data bank and from the Pennsylvania State
Environmental Resources Research Institute (Lynch and
others 1987). Additional mean annual precipitation values
for the same 3 years were obtained from the National
Weather Service (NWS)  for 54 other sites in the same
region (fig. 2). The longitude and latitude coordinates of
each point were converted to Alber’s conic, equal area
projection coordinates (Pearson 1990) to accurately
calculate distances between sample points.

Sulfate deposition values were estimated by point kriging
using both the direct and indirect methods. The validity of
each technique was evaluated by cross-validation. To cross-
validate, each sample point from the data set was
successively dropped and its value was estimated from the
remaining (n- 1) points. The predictive ability of the two
interpolation techniques can then be evaluated by comparing
the estimated with the observed value using the Predicted
Error Sum of Squares (PRESS) statistic (Green 1983):

PRESS = 2 [Z(Xi)  - i(x,)]2 . (5)
1=1

The percent improvement (PI) using the indirect method
versus the direct method can be estimated:

PI = (1 - pmssimfirecl

pREssdirect

) x 100 . (6)
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Figure 3-Variogram  for the direct method. Model is based on the 24-site
pollutant monitoring network.

The direct versus indirect estimation methods were
evaluated by the following two criteria: (1) comparison of
the mean and variance of the observed and interpolated
values, and (2) the sum of squared errors between observed
and interpolated values (PRESS statistic).

The semi-variance for sulfate deposition at the 24 monitored
sites was calculated and a model for the semi-variogram was
determined (fig. 3):

(h) = 0.05  + o.+& - p-,3],  O<h_u100
(7)

(h) = 0.55 . h>400

Choosing this semi-variogram model was based on the five
criteria outlined by Myers and others (1982) for semi-
variogram selection:

(a) i$ [z(xJ - 2(xi)] should be 0,
I

(b) Ik [z(xJ - i( should be small,
n i=l

(c) ;t [‘(“)  ;, i(xs]2 should be 1 ,
I I

(d) sample correzation  of z(x)$(x)  near 1, and

(e) sample correlation of i(x),[z(x) - Z(x)]  / ui near 0 .

Each point was then estimated by ordinary point kriging
using the cross-validation procedure described, and the
squared difference between the predicted and observed
value was calculated.

The sample correlation between concentration and
precipitation was calculated and was not found significant
(p = 0.43, n = 24). The semi-variogram model for sulfate
concentration was determined using the same five criteria
(fig. 4):

y(h) = 1.524 + 18.423[2+)
2 400

- ;(&)3], O<h<400 (8)

y(h) = 19.947 . h>400

From this, kriged estimates of sulfate concentration at each
of the 54 NWS sites were made (Fig. 5). Estimates of
sulfate concentration were multiplied by mean annual
precipitation values at the 54 NWS sites to estimate
deposition. The semi-variogram for sulfate deposition was
calculated from the resulting data set of 78 (24 NADP sites
and 54 NWS sites) deposition values, with each of the 78
sites treated as an observed value (Fig. 6):

v . . . . . . .

SO4 Concentration

4-
.

loo 150 200 250 300 350 400 d
Distance ( h )

Figure 4-Variogram for sulfate concentration. Model is based on the 24.
site pollutant monitoring network.
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Figure 5-Kriged estimates of sulfate concentration. Response surface is based on the 24-site pollutant monitoring network.

y(h) = 0.05 + 0.28[$&-)

- p--)'k O<h_u100

y(h) = 0.33 . b400

(9)

?
o Indirect Method

This semi-variogram model was used to point krige
deposition estimates for each of the 24 measured sites. The

8, cross-validation procedure and the squared difference
x) loo 150  200 250 100  350 400 4%

Distance (h)
between the predicted and observed values were calculated.

Figure 6-Variogram for the indirect method. Model is based on a
network of 78 locations.
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Table l-Comparison of the mean and standard deviation of the observed and kriged estimates of sulfate
deposition and the predicted error sum of squares of the kriged estimates using both the direct and indirect
approach

Method Semi-variogram

Direct Equation (2)
Indirect Equation (4)

Observed Estimated PRESS
Mean Sda Mean Sd“ PRESS PAb

3.251 0.608 3.244 0.422 4.353 1.870
3.251 .608 3.373 .423 3.331 1.426

Percent improvement, equation (1)

‘Sd is abbreviation for standard deviation.

23.5 23.7

b PA is standard abbreviation for Pennsylvania.

Table 2-Comparison  of the mean and standard deviation of the observed and kriged estimates of sulfate
deposition and the prediction error sum of squares of the kriged estimates using both the direct and indirect
approach

Observed Estimated PRESS
Method Semi-variogram Mean Sd“ Mean Sda PRESS PAb

Direct Equation (4) 3.251 0.608 3.253 0.408 4.324 1.767
Indirect Equation (2) 3.251 .608 3.353 .421 3.351 1.477

Percent improvement, equation (1) 23.0 21.0

‘Sd is abbreviation for standard deviation.
b PA is standard abbreviation for Pennsylvania.

Results and Discussion

Table 1 compares the cross-validation results. The mean of
the estimates using the direct method more closely
approximates the true mean of the data and the standard
errors of the estimates from the two different methods are
essentially equal. However, the difference in the predicted
error sum of squares indicates that while for most
observations the two methods are practically equivalent, for
a few extreme or unusual cases the indirect method more
closely predicts the true deposition value.

The difference between the two methods does not lie simply
in the choice of variogram models, because the difference in
predicted error sum of squares remains when the semi-
variogram model derived from the indirect approach is
applied in the direct method and vice versa (table 2). The
difference seems to lie in how the indirect method utilizes
additional data, shifting the weighting scheme for points

neighboring certain extreme or unusual data (precipitation)
values. Because the indirect method uses a denser network
of deposition values to make estimates, it provides more
accuracy, particularly at unique or relatively isolated sites.
By using the denser precipitation network, the number of
sample points within a certain distance of any given point
will either increase or remain unchanged.

If the assumption that sample points close together tend to
be more alike than points farther apart holds (i.e., the data
are spatially correlated), as the semi-variograms indicate,
increasing the number of points at a close range can
improve the estimates of deposition.

Contour maps drawn using the two methods show a similar
pattern of deposition in the western and central part of the
region (fig. 7). Insufftcient  data are available to predict
values for the far northeast comer using the direct method;



Figure 7-(A) sulfate deposition estimates using the direct method, and (B) sulfate deposition estimates using the
indirect method.
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therefore, the deposition maps differ radically in the east.
Deposition estimates are greater and the deposition field
less smooth using the denser network of data available
through the indirect method.

Conclusion

The indirect method of estimating acid deposition was first
proposed several years ago (Granat 1988) but has never
been formally tested with actual data. This study shows that
using supplemental data from a precipitation monitoring
network to improve estimates of acid deposition can be
effective, particularly at sites relatively isolated from the
acid deposition monitoring network. Although the data
used to supplement the deposition data in the indirect
approach are not precise measurements, the increase in
sampling density they provide appears to outweigh the
uncertainty involved in using them.
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accurate estimate of acidic deposition at forest sample sites. We examine two methods (direct
and indirect) for estimating sulfate deposition at atmospherically unmonitored forest sites. The
direct method only uses directly measured deposition data, while the indirect method
additionally incorporates precipitation measurements from a spatially denser network of
monitoring sites. Sulfate deposition values were estimated by point kriging using both the
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relatively isolated to the acid deposition monitoring network. Cross-validation procedures
indicate that by using the indirect method, a reduction of approximately 20 to 25 percent in the
predicted error sum of squares occurred.
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